

The JTAG Interface: AN ATTACKER'S PERSPECTIVE

Technical Paper

Alain Iamburg Research Scientist Optiv

Introduction

Embedded devices often contain powerful system interfaces that allow engineers to program flash memory, manipulate a chip's external pin states, or take full control of a live CPU via On-Chip Debugging (OCD). These abilities are also useful for vulnerability research and exploitation. This article is intended to provide security researchers with a practical foundation for working with the JTAG interface, which is one of the most ubiquitous standards in the industry.

A Brief History of Debug Interfaces

Traditionally, in-circuit testing of embedded devices was carried out with bed-of-nails test fixtures. Springloaded probes would make physical contact with test pads on the PCB to communicate with chips and test for functionality or failures in different areas including:

- Circuit soldering or component assembly
- Functional interaction between microcontrollers or components

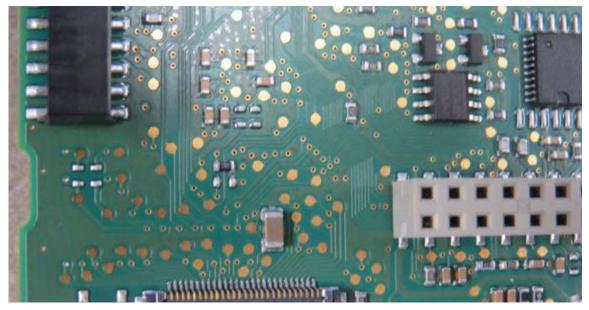


Figure 1: Many Test Pads on a PCB

Figure 2: PCB Bed-of-Nails Test Fixture

As newer devices became more densely packed with complex ICs, the old testing methodology became insufficient to meet the demands of high-performance system designs. Modern debug interfaces addressed these shortcomings and were eventually equipped with more advanced system debugging functionality.

An Introduction to Joint Test Access Group (JTAG)

JTAG (IEEE 1149.1) is one of the most widely deployed test/debug standards for embedded devices. The following signals are used:

Name	Description
TMS	Mode Select
TCK	Clock
TDI	Data In
TDO	Data Out
nTRST	TAP/JTAG Reset (optional; may be required for your target)
nSRST	System/CPU Reset (optional; may be required for your target)
VTRef	Target Reference Voltage (may be required for your tools)

JTAG can be implemented for a single target device, or many on the same board via daisy chaining. This makes it possible to interact with many chips on a board using only a single port.

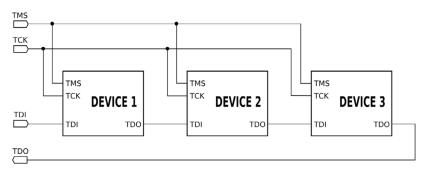


Figure 3: JTAG Wiring Diagram (source: Wikipedia)

The following Marvell board exposes a JTAG header. This board includes silkscreen markings identifying the test pads as "W_TDI", "W_TCK", "W_TDO", and "W_TMS".

Figure 4: JTAG Test Points (1)

The following board from a wireless router includes a JTAG header with a silkscreen label, however the header does not indicate which pads correspond to which JTAG signals.

Figure 5: JTAG Test Points (2)

The JTAG header below does not contain descriptive labels other than "DJ1".

Figure 6: JTAG Test Points (3)

Under the hood, the JTAG Test Access Port (TAP) is a 16-state finite state machine made up of the following components:

- Instruction Register (IR)
 - › Fixed length
 - › Used to load instructions
- Data Registers (DRs)
 - › Variable length
 - , Used for data I/O
- TAP Controller
 - , Handles state machine logic
 - Implements core JTAG instructions
 - , Clocks data in and out

This basic framework is leveraged and extended to provide device- or vendor-specific higher-level functionality such as:

- Reading and writing internal memory
- On-chip debugging (break, step)
- Indirect access to other connected on-board components such as SPI, I²C, or CFI chips via the SoC's external pins

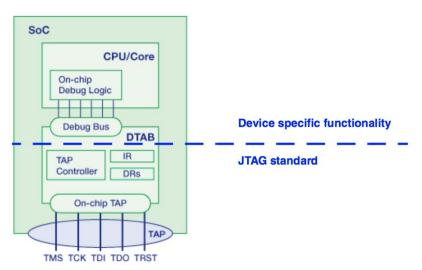


Figure 7: Debug and Test Access Block Boundary (source: Lauterbach GmbH)

The rising edge of the clock (TCK) loads input data from TMS and TDI, and executes state transitions based on the value of TMS and the current state. The falling edge of the clock sends data out of TDO.

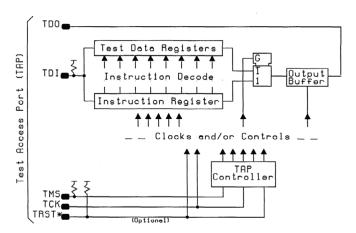


Figure 8: JTAG Test Logic (source: IEEE TAP and Boundary-Scan Architecture)

The instruction register is selected to receive data by entering the Shift-IR state, and one of the data registers is selected by entering the Shift-DR state. The instruction currently loaded in the IR register determines the particular DR that will be selected. For example, loading the IDCODE instruction would select the device ID data register, and then entering the Shift-DR state would cause the resulting data to be output on TDO. Register data resides in a shadow latch until it is updated by entering the Update-xR state. The following diagram illustrates the TMS signals required to enter different states. Based on this information it can be seen that starting from any given state, it would take no more than five consecutive high bits on TMS to put the TAP into the Test-Logic-Reset state. (This is why the nTRST signal is optional.)

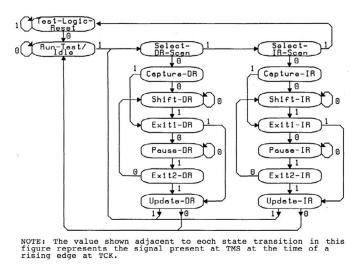


Figure 9: TAP Controller State Diagram (source: IEEE TAP and Boundary-Scan Architecture)

As shown in the preceding photos, JTAG test points may appear in different physical arrangements. There may not even be test headers present, requiring additional effort to locate and probe the JTAG signals.

Reverse Engineering JTAG Connections

Many standard PCB layouts exist for JTAG headers according to the target platform, which can provide a starting point for discovering actual pin to signal assignments. The Broadcom CPU from Figure 6 is MIPS-based therefore it would be reasonable to guess it uses the EJTAG standard pinout:

nTRST12GNDTDI34GNDTDO56GNDTMS78GNDTCK910GNDnSRST1112KEY	Name	Pin		Name
TDI34GNDTDO56GNDTMS78GNDTCK910GND		1	2	GND
TDO 5 6 GND TMS 7 8 GND TCK 9 10 GND	TDI	3	4	GND
TMS 7 8 GND TCK 9 10 GND	TDO	5	6	GND
TCK 9 10 GND	TMS	7	8	GND
nSRST 11 12 KEY	TCK	9	10	GND
	nSRST	11	12	KEY

Indeed, a continuity test shows the even-numbered test points of the DJ1 header are tied to ground. A JTAGulator is used to automate the enumeration of the remaining header pins.

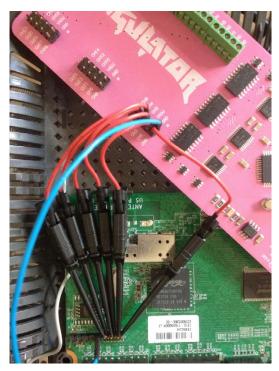


Figure 10: JTAGulating the DJ1 Header

The JTAGulator is controlled via a serial shell that is exposed over its USB interface. The tool can enumerate JTAG pins on a target device via two scan types that take advantage of the specifications in the JTAG standard. The following output shows the process of using the JTAGulator (on channels 0-5) to enumerate the odd numbered pins of the DJ1 header. First the target voltage of 3.3v is selected.

\$ picocom --baud 115200 /dev/tty.usbserial-A5028BXW picocom v1.7 port is : /dev/tty.usbserial-A5028BXW flowcontrol : none baudrate is : 115200 parity is : none databits are : 8 : C-a escape is local echo is : no noinit is : no noreset is : no send_cmd is : sz -vv receive_cmd is : rz -vv imap is omap is : emap is : crcrlf,delbs, Terminal ready Welcome to JTAGulator. Press 'H' for available commands. : h JTAG Commands: Identify JTAG pinout (IDCODE Scan) Т Identify JTAG pinout (BYPASS Scan) В D Get Device ID(s) T Test BYPASS (TDI to TDO) UART Commands: U Identify UART pinout P UART passthrough General Commands: Set target I/O voltage (1.2V to 3.3V) V Read all channels (input) R Write all channels (output) W J Display version information H Display available commands : **j** JTAGulator FW 1.3 Designed by Joe Grand, Grand Idea Studio, Inc. Main: jtagulator.com Source: github.com/grandideastudio/jtagulator Support: www.parallax.com/support : v Current target I/O voltage: Undefined Enter new target I/O voltage (1.2 - 3.3, 0 for off): 3.3 New target I/O voltage set: 3.3 Ensure VADJ is NOT connected to target!

IDCODE Scan

The JTAGulator's IDCODE scan identifies the TDO, TCK, and TMS pins by successfully reading out the device ID. A device may have an IDCODE instruction for reading out the device ID, however the JTAG standard dictates that the device ID should be loaded into the data register at reset. Therefore by resetting the TAP and then holding it in the *Shift*-DR state, we should receive the device ID over TDO. Note that the TDI and nTRST pins are not involved in this scan.

:i Enter starting channel [0]: Enter ending channel [0]: 5 Possible permutations: 120 Press spacebar to begin (any other key to abort)... JTAGulating! Press any key to abort... TDI: N/A TDO: 2 TCK: 4 TMS: 3 TRST#: 0 TRST#: 1 -IDCODE scan complete.

The scan enumerated the following pins:

Channel	DJ1 Header Pin	JTAG Signal
2	5	TDO
3	7	TMS
4	9	TCK

We can observe the data traffic on the wires using a logic analyzer wired in parallel with the JTAGulator:

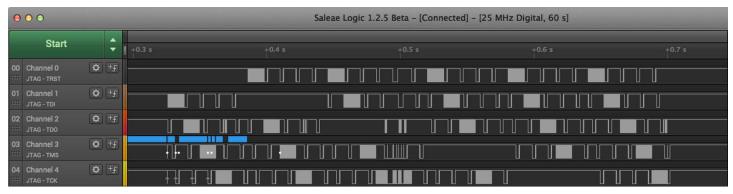


Figure 11: JTAGulator IDCODE Scan (full trace)

The scan completed in roughly 0.7 seconds. Zooming in to the last permutation in the trace, it is possible to follow the state changes and data transfers as shown in Figure 12.

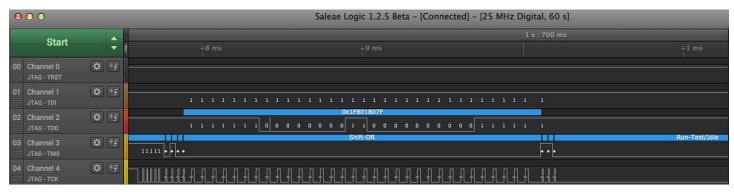


Figure 12: JTAGulator IDCODE Scan (final, successful permutation)

Initially the TAP is brought to the reset state and then it is placed into the Shift-DR state, at which point data is seen on TDO. State changes are indicated by a white dot in the TMS waveform. Recall that from any initial state, five high bits ("1"s) in a row will bring the TAP into the *Test-Logic-Reset* state. In case the logic trace is unclear, the following table illustrates the state changes:

							Clo	ock Cycles				
TMS	1	1	1	1	1	0	1	0	00	1	1	0
TAP State	?	?	?	?	Test- Logic- Reset	Run-Test/Idle	Select-DR- Scan	Capture-DR	Shift-DR	Exitı-DR	Update-DR	Run-Test/Idle
TDO						n/a			0xF801807F		n/a	

BYPASS Scan

This scan uses the BYPASS instruction to discover the TDI pin. The BYPASS instruction causes input on TDI to be shifted through a 1-bit data register and out of TDO, skipping the chip's internal logic. Therefore by sending a bit pattern to target pins and monitoring the previously discovered TDO pin for matching data, it is possible to discover the TDI pin. Also since the BYPASS data register is always one bit wide, this scan can determine the number of devices on the JTAG chain by counting how many bits must be shifted in before the first bit appears on TDO.

```
: b
Enter starting channel [0]:
Enter ending channel [5]:
Are any pins already known? [y/N]: y
Enter X for any unknown pin.
Enter TDI pin [0]: x
Enter TDO pin [2]:
Enter TCK pin [4]:
Enter TMS pin [3]:
Possible permutations: 6
Press spacebar to begin (any other key to abort)...
JTAGulating! Press any key to abort...
TDI: 1
TDO: 2
TCK: 4
TMS: 3
TRST#: 0
Number of devices detected: 1
BYPASS scan complete.
```

We can observe the mechanics of the scan using the Saleae logic analyzer. The trace shows the standard JTAG BYPASS instruction (all 1s) being shifted into the instruction register. Then, a random bit stream sent out on the candidate TDI pin is seen coming back out of TDO after a delay of 1 clock cycle. This scan confirms the identity of the TDI pin and the fact that there is only 1 device on the JTAG chain.

•••		-	and the second	Saleae Logic 1.2.5 Beta - [Connecte	d] – [25 MHz Digital, 60 s]	
Start		2	+5 ms	+6 ms	+7 ms	
00 Channel 0 JTAG-TRST	¢ +	£				
01 Channel 1 IIII JTAG - TDI	\$ +	£	Ox1FFFFFFF	1 0 1 1 1 1 1 0 1		
02 Channel 2 IIII JTAG - TDO	\$ +	£]		1 0 0 1 1 1 1 1 0 0		0 1 0 0 1 0
03 Channel 3 IIII JTAG - TMS	\$ +	£	Shift-IR	• • • •	Shift-DR	••
04 Channel 4 JTAG - TCK	\$ +	F LLLL				╶┨╺┨╺┨╺┨╺┨╺┨

Figure 13: JTAGulator BYPASS Scan (final, successful permutation)

We can also manually send the BYPASS instruction at any time to ensure we have the correct wiring:

:t Enter TDI pin [1]: Enter TDO pin [2]: Enter TCK pin [4]: Enter TMS pin [3]: All other channels set to output HIGH. Number of devices detected: 1 Pattern in to TDI: 0001100011110100011010101111001 Pattern out from TDO: 0001100011110100110101111001 Match!

The JTAGulator enumerated the JTAG signals and discovered one device on the chain.

Name	Pin		Name
nTRST	1	2	GND
TDI	3	4	GND
TDO	5	6	GND
TMS	7	8	GND
TCK	9	10	GND
n/a	11	12	GND
	•••••		••••••

System Access via JTAG (Low Level)

The following are common JTAG instructions and their corresponding data registers. The first three must be implemented in a device for it to be considered IEEE 1149.1 compliant, and the last two are optional.

Instruction	Data Register	Function
BYPASS	BYPASS Register (1-bit long)	Connects TDI and TDO via the BYPASS register
EXTEST	Boundary Scan Register (BSR)	Connects TDI and TDO via the BSR Reads/toggles device external pin states • Pin states are captured in the Capture-DR state • New values are shifted into the BSR in the Shift-DR state • New values are applied to device pins in the Update-DR state
SAMPLE / PRELOAD	Boundary Scan Register (BSR)	Connects TDI and TDO via the BSR Device is left in normal functioning mode (i.e. read-only) BSR is scanned to take a sample of device pin states Also used to preload test data into the BSR prior to executing EXTEST
IDCODE	ID Register	Connects TDI and TDO via the IDCODE register Returns vendor/device ID
INTEST	Boundary Scan Register (BSR)	Connects TDI and TDO via the BSR Like EXTEST, but used for the manipulation of on-chip internal logic (e.g. in a CPLD) instead of external pins

I highly recommend watching <u>EEVblog #499</u> for a beautiful explanation of JTAG and boundary scan from an engineer's perspective.

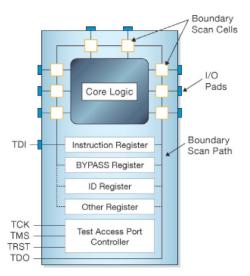


Figure 14: Core JTAG Functionality (Source: XJTAG)

The Flyswatter2 is a low cost USB to JTAG adapter based on the FTDI FT2232H chip. It is well supported by various popular software tools.

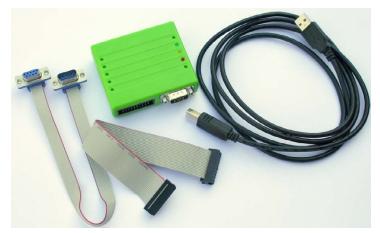


Figure 15: Flyswatter2 JTAG Adapter

<u>UrJTAG</u> is lightweight and flexible CLI software that is ideal for generic probing of devices. Some useful commands are shown below.

Command	Description
cable <jtag_dongle></jtag_dongle>	Connect and initialize JTAG adapter
detect	Detect IR length, chain length, device IDs
discovery	Discover JTAG instructions and corresponding data register lengths
register <name> <length></length></name>	Declare a new data register
instruction length <num_bits></num_bits>	Set the length of the IR
instruction <name> <opcode> <dr></dr></opcode></name>	Declare a new instruction and its data register
instruction <name></name>	Change active instruction
shift ir	Shift active instruction into device's IR
shift dr	Shift data out of device's data register
dr	Print received data from device's data register

UrJTAG 0.10 #2007 Copyright (C) 2002, 2003 ETC s.r.o. Copyright (C) 2007, 2008, 2009 Kolja Waschk and the respective authors UrJTAG is free software, covered by the GNU General Public License, and you are welcome to change it and/or distribute copies of it under certain conditions. There is absolutely no warranty for UrJTAG. warning: UrJTAG may damage your hardware! Type "quit" to exit, "help" for help. jtag> cable flyswatter Connected to libftdi driver. jtag> detect IR length: 32 Chain length: 1 Device Id: 00010000000111001010000101111111 (0×101CA17F) Manufacturer: Broadcom (0x17F) Unknown part! (0000000111001010) (/usr/share/urjtag/broadcom/PARTS) jtag> discovery Detecting IR length ... 32

The target Broadcom device was detected with an instruction register length of 32. UrJTAG didn't recognize the particular device ID, but it discovered some potential JTAG instructions by brute forcing the instruction register and measuring the length of the corresponding data register.

UrJTAG lets you manually send commands over a JTAG chain. This may be used to invoke standard and/or undocumented functionality on devices. The following information is required to prepare a JTAG instruction via UrJTAG:

- Instruction register length
- Data register name and length
- Instruction name, opcode and associated data register

To execute an instruction, it is shifted into the instruction register. Then, the data register is shifted out to read the result. UrJTAG handles the required state changes behind the scenes. The 'dr' command simply prints the last contents that were shifted out of the data register. Arbitrary names can be chosen for instructions and registers, but I am naming these based on knowledge of their purpose.

The '0x6' instruction turned out to be IDCODE. The '0x8' instruction below is more interesting. It has a long data register of 116 bits, which is likely the BSR containing the pin states of the BGA SoC, and this instruction is likely SAMPLE or EXTEST. Shifting the data register, the states of the chip's pins are returned.

When running this instruction again with the WPS button held down, the same data is returned but with one bit cleared. Notice the data marked in red. This bit represents the SoC's external I/O pin that is connected to the button.

Figure 16: WPS Button

This shows how to monitor SoC pin states at a low level over JTAG. New pin states could be toggled by shifting data into the DR via "dr <data>." I am only touching on some functionality of UrJTAG.

Another tool, <u>TopJTAG Probe</u>, is useful for visualizing boundary scan operations while reading or toggling individual pins. The only required input is a Boundary Scan Description Language (BSDL) file, which identifies a SoC's pin mappings and JTAG instructions/registers. Some sources for BSDL files are <u>here</u>, <u>here</u>, and <u>here</u>.

Q Pins	60° Watch	here and a second se						
		🖄 Waveform	100	-	Run R	🔄 JTAG Reset	1 Instruction	
				×		CPLD : EPM	112705256	
1270F256				-		CPLD : EPM	112/0F256	
Pin #	Port	I/O Value	Туре					
P11	IOP11	1/1	inout					
P12	IOP12	1/1	inout					
		10/10 (hex)	inout					
P10	IOP10	0/0	inout					
P9	IOP9	0/0	inout					
P8	IOP8	0/0	inout					
P7	IOP7	1/1	inout	-				-
				P		EXTE	EST	
5 min	o 🕂 🔂							
Pin #	# Type	20		40		• 60 • • •	. 80	100 s
P11	out of i	nout						
:0]	out of i	nout 15555	24444		15555		24444	155
	in of in	out AA	X 58	5	X	10 XAA	X 55	
P10	in of in	out			Ē			
	Pin # P11 P12 P10 P9 P8 P7 5 min P1n # P11 0]	Pin # Port P11 IOP11 P12 IOP12 P10 IOP10 P9 IOP9 P8 IOP8 P7 ICP7 Smin ⊕ €● Pin # Type P11 out of i 01 out of i	Pin # Port I/O Value P11 IOP11 1/1 P12 IOP12 1/1 P10 IOP10 0/0 P9 IOP9 0/0 P8 IOP8 0/0 P7 IOP7 1/1	Pin # Port I/O Value Type P11 IOP11 1/1 inout P12 IOP12 1/1 inout IOP12 1/1 inout inout P10 IOP10 0/0 inout P9 IOP9 0/0 inout P8 IOP8 0/0 inout P7 IOP7 1/1 inout	Pin # Port I/O Value Type P11 IOP11 1/1 inout ^ P12 IOP12 1/1 inout ^ 10/10 (hex) inout 10/10 (hex) inout ^ P10 IOP10 0/0 inout ^ P3 IOP9 0/0 inout ^ P4 IOP7 1/1 inout * Smin + ++ IQ Image: Comparison of the temperature Image: Comparison of temperature Smin + ++ Image: Comparison of temperature Image: Comparison of temperature Image: Comparison of temperature Smin + ++ Image: Comparison of temperature Image: Comparison of temperature Image: Comparison of temperature Smin + ++ Image: Comparison of temperature Image: Comparison of temperature Image: Comparison of temperature Smin + ++ Image: Comparison of temperature Image: Comparison of temperature Image: Comparison of temperature Smin + ++ Image: Comparison of temperature Image: Comparison of temperature Image: Comparison of temperature Image: Comparison of temperat	Pin # Port I/O Value Type P11 IOP11 1/1 inout P12 IOP12 1/1 inout 10/10 (hex) inout 10/10 (hex) inout P10 IOP10 0/0 inout P3 IOP9 0/0 inout P8 IOP8 0/0 inout P7 IOP7 1/1 inout Smin + ++ C - P11 out of inout - - 01 out of inout 15555 2AAAA 15555 In of inout XAA X55 X8	Pin # Port I/O Value Type P11 IOP11 1/1 inout P12 IOP12 1/1 inout 10/10 (hex) inout 10/10 (hex) inout P3 IOP3 0/0 inout P8 IOP8 0/0 inout P7 IOP7 1/1 inout Smin Pin # Type Smin Ol out of inout IO out of inout IO IO IO IO	Pin # Port I/O Value Type P11 IOP11 1/1 inout P12 IOP12 1/1 inout P10 IOP12 1/1 inout P10 IOP10 0/0 inout P3 IOP3 0/0 inout P8 IOP8 0/0 inout P7 P7 IOP7 1/1 inout P Smin ↔ € € P P11 out of inout 15555 2AAAA 15555 2AAAA Ol out of inout 12555 2AAAA 15555 2AAAA

Figure 17: TopJTAG Probe Boundary Scan Software

System Access via JTAG (Medium Level)

The ability to read and toggle a chip's external pins is intriguing because it means we can communicate with other connected chips on the board. The following diagram illustrates the data flow (in this case, depicting a parallel flash chip).

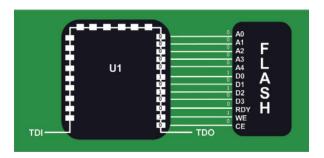


Figure 18: Accessing External Flash via JTAG Boundary Scan (Source: Intellitech.com)

Various software tools exist for dumping external flash via boundary scan, such as UrJTAG, J-Flash, and <u>TopJTAG</u> <u>Flash Programmer</u>. The <u>USB JTAG NT</u> adapter supports boundary scan and some vendor extensions via its accompanying software as shown below.

Figure 19: USB JTAG NT Adapter

Copyright (C) 2010-2015 USB JTAG NT 0.71a Target: E800 -**detect** IDCODE 1008C17F Broadcom BCM008C IMPCODE 60414000 EJTAG V2.6 DMA not supported Found Address= 00000000 W25Q64CV -**getram 0 800000** Time 00:08:30 (.697)

USBJTAG NT detected and dumped an external W25Q64CV serial flash chip via the EXTEST instruction.

] 🖉 🗖 🍏 🔟	88	e 🛛	2	Range: boot	▼ Speed: 1200	0000Hz 💌
800 1000000.bin Afash.bin Afash.bot.bin Afash.bot.bin Afash.pot.bin Af	00001490 6 00001480 00001480 00001480 00001480 00001480 00001490 00000000000000000000000000000	0 00 00 00 00 0 00 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 01 00 00 00 01 00 00 00 01 00 00 00 01 00 00 00 01 00 00<</td> <td></td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 01 00 00 00 01 00 00 00 01 00 00 00 01 00 00 00 01 00 00<	

Figure 20: SPI Flash Dumped via JTAG Boundary Scan

This was done by shifting bits through the JTAG chain and directly interfacing with the pins of the attached <u>SPI chip.</u>

System Access via JTAG (High Level)

As previously shown, the JTAG interface defines low-level data I/O and basic logic. In order to implement functionality such as on-chip debugging, it is necessary to invoke vendor-specific instructions, data registers, and initialization sequences.

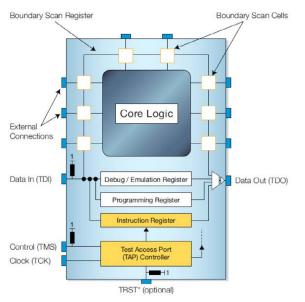


Figure 21: JTAG Debug/Programming Logic (Source: XJTAG)

For example the following are a subset of instructions defined by <u>EJTAG</u>, which is a MIPS extension of JTAG:

Instruction	Function
IMPCODE	Selects the implementation register
ADDRESS	Selects the address register
DATA	Selects the data register
CONTROL	Selects the EJTAG control register
EJTAGBOOT	Selects the bypass register and sets EjtagBrk, ProbEn and ProbTrap to 1 as reset value
TCBCONTROLA	Selects the TCBTCONTROLA register in the trace control block
TCBDATA	Selects the TCBDATA register in the trace control block

The SEGGER J-Link adapter is suitable for professional engineering work and has native support for many target chips such as the ARM-based Marvell device in Figure 4.

Figure 22: J-Link JTAG Adapter

The J-Flash software includes vendor-specific JTAG initialization sequences for a large number of target chips including virtually every ARM device, allowing access to internal memory.

	M 💿 🔍	23	C:\							Mar	vell_t	lash.	bin							
Name	Value		Address:	0x1F0	00000	0	_	x1	×2	×4										
Connection	USB [Device 0]		- ,				_	-	_	_										
Target interface	JTAG		Address	0	1	2	3	4	5	6	7	8	9	A	B	С	D	E	F	ASCII
			1F005FC0						FF	FF			FF						FF	
nit JTAG speed	5 kHz		1F005FD0		FF	FF	FF	FF	FF	FF	FF	FF				FF	FF	FF	FF	
TAG speed	Auto recognition		1F005FE0		FF	FF		FF	FF								FF	FF	FF	
AP number	<not used=""></not>		1F005FF0	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
RPre	<not used=""></not>		1F006000																	
			1F006010																	
4CU	Marvell 88MC200		1F006020																	
ndian	Little		1F006030																	
heck core Id	Yes		1F006040																	
Core Id	0x2BA01477		1F006050																	
Ise target RAM	Yes		1F006060																	
AM address	0x100000		1F006070																	
AM size	192 KB		1F006080																	
			1F006090																	C.aca_info.devic
lash memory	88MC200 internal		1F0060A0																	e_name=SW63333333
fanufacturer	Marvell		1F0060B0						43				61					6F		4N.WMC.aca_info.
ize	1024 KB		1F0060C0			76							73			32		00		device_pass=2X.W
lash Id	0x0		1F0060D0		43								66					76		MC.aca_info.devi
Check flash Id	No		1F0060E0				61						45					30		ce_aes=49EAFDCØC
ase address	0x1F000000		1F0060F0						32				34					30		F48202DEE4E4190F
Irganization	32 bits x 1 chip		1F006100		30			30		38	00	00				FF		FF		60F10D8
			1F006110		FF	FF	FF	FF	FF	FF	FF						FF	FF	FF	
			1F006120		FF		FF	FF	FF	FF	FF	FF				FF	FF	FF	FF	
	III		1F006130	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
					-	100		1000	101004		7776	1000							100	
le .																				
C.																				
LOG																				
LOG																				
LOG nnecting Connecting via U	JSB to J-Link device		ad Sec 22 2014	22-26	-42)															
LOG Innecting Connecting via U J-Link firmware: \	1.20 (J-Link ARM V	8 comp	iled Sep 22 2014	23:26	:43)															
LOG innecting Connecting via L J-Link firmware: \ Target interface :	/1.20 (J-Link ARM V speed: 5 kHz (Fixed)	8 comp	iled Sep 22 2014	23:26	:43)															
LOG nnecting Connecting via U I-Link firmware: V Target interface :	V1.20 (J-Link ARM V speed: 5 kHz (Fixed) ore (Init sequence)	8 comp	iled Sep 22 2014	23:26	:43)															
J-Link firmware: \ Target interface :	/1.20 (J-Link ARM V speed: 5 kHz (Fixed)	8 comp	iled Sep 22 2014	23:26	:43)															

Figure 23: Dumping Internal Flash via JTAG

<u>OpenOCD</u> is a tool that is geared towards embedded system debugging and programming. Ideally, once the bridge is established it is possible to obtain low-level control of the target CPU in much the same way a local debugger controls the CPU on a PC. OpenOCD includes support for <u>various JTAG adapters</u> and CPU targets via configuration files. We will use a Linksys WRT54GL as a target device.

The relevant inputs are:

- Adapter Configuration (jlink.cfg)
 - Defines and configures the link driver for talking with the JTAG adapter
- Board Configuration (linksys-wrt54gl.cfg)
 - , Defines attached CFI flash and memory mapping
- Target Configuration (bcm5352e.cfg)
 - Defines CPU ID and IR length
 - , Defines the architecture and bus driver

```
$ cat interface/jlink.cfg
#
# Segger J-Link
#
# http://www.segger.com/jlink.html
#
interface jlink
transport select jtag
adapter_khz 6000
$ cat board/linksys-wrt54gl.cfg
#
# Linksys WRT54GL v1.1
#
source [find target/bcm5352e.cfg]
set partition_list {
              { Bootloader
    CFE
                                           0×1c000000 0×00040000 }
              { "Kernel+rootfs"
                                          0x1c040000 0x003b0000 }
    firmware
               { "Config space"
                                            0x1c3f0000 0x00010000 }
    nvram
}
# External 4MB NOR Flash (Intel TE28F320C3BD90 or similar)
set _FLASHNAME $_CHIPNAME.flash
flash bank $_FLASHNAME cfi 0x1c000000 0x00400000 2 2 $_TARGETNAME
$ cat target/bcm5352e.cfg
set _CHIPNAME bcm5352e
set _CPUID 0x0535217f
jtag newtap $_CHIPNAME cpu -irlen 8 -expected-id $_CPUID
set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME mips_m4k -endian little -chain-position $_TARGETNAME
gdb_memory_map disable
$_TARGETNAME configure -event gdb-attach {
   reset
   halt
 }
$ sudo openocd -f interface/jlink.cfg -f board/linksys-wrt54gl.cfg
Open On-Chip Debugger 0.10.0-dev-00212-g50d4f76-dirty (2016-08-22-13:29)
Licensed under GNU GPL v2
For bug reports, read
       http://openocd.org/doc/doxygen/bugs.html
adapter speed: 6000 kHz
Info : No device selected, using first device.
Info : J-Link ARM V8 compiled Sep 22 2014 23:26:43
Info : Hardware version: 8.00
Info : VTarget = 3.351 V
Info : clock speed 6000 kHz
```

OpenOCD serves a CLI control service on port 4444.

<pre>\$ telnet localhost 444 Trying 127.0.0.1 Connected to localhost Escape character is '^ Open On-Chip Debugger > scan_chain</pre>		
TapName	Enabled	IdCode Expected IrLen IrCap IrMask
<pre>0 bcm5352e.cpu > targets</pre>	Y	0x0535217f 0x0535217f 8 0x01 0x03
TargetName	Туре	Endian TapName State
0* bcm5352e.cpu > halt	mips_m4k	little bcm5352e.cpu running
<pre>bcm5352e.cpu: target s target halted in MIPS3 > targets</pre>		ted e to debug-request, pc: 0x80003260
TargetName	Туре	Endian TapName State
0* bcm5352e.cpu >	mips_m4k	little bcm5352e.cpu halted

In addition OpenOCD starts up a GDB server on port 3333, providing a familiar debugging environment of the live device.

gdb\$ set architecture mips The target architecture is assumed to be mips gdb\$ target remote localhost:3333								
Remote debugging using localhost:3333								
gdb\$		0 0						
	zero	at	v0	v1	a0	al		а3
RO							00010a40	
	t0	t1	t2	t3	t4	t5	t6	t7
R8	⊍c⊍cabce s0						9fc02278	
R16		s1	s2	s3	s4	s5	s6 803a3138	s7
NT0	t8	t9	k0	k1	gp	sp	s8	ra
R24							bfc02180	
	status	lo	hi	badvaddr	cause	рс		
	00400000		$\odot \odot \odot \odot \odot \odot \odot \odot \odot$	$\odot \odot \odot \odot \odot \odot \odot \odot \odot$	$\odot \odot \odot \odot \odot \odot \odot \odot \odot$	9fc02334		
	fcsr							
م ما ام ذ		00000000						
<u> </u>	x/20i \$pc x9fc02334:	SW +	0,0(al)					
	x9fc02338:		0,a0,4					
	x9fc0233c:		1,a1,4					
0:	x9fc02340:	addi a	2,a2,-4					
	x9fc02344:		2,0x9fc02	330				
	x9fc02348:							
	x9fc0234c: x9fc02350:		0,0x5a42					
	x9fc02350:		0,0x5a42 0,a0,0x53	53				
	x9fc02358:		x9fc02360	55				
0:	x9fc0235c:	nop						
0)	x9fc02360:	nop						
	x9fc02364:		1,0×8030					
	x9fc02368:		1,k1,9056					
	x9fc0236c: x9fc02370:		a,ra,k1 1,0x8030					
	x9fc02374:		1,k1,8232					
	x9fc02378:		1,k1,ra					
02	x9fc0237c:	lw k	1,4(k1)					
	x9fc02380:		x9fc02388					
	x9fc02384:							
<u> </u>	x/20x \$sp 3a3178:	+0x50 0x803276		ffffff	0×0000	0001	0xfffffff	e
	3a3188:	0x0000000		00000000	0x0000 0x0000		0xfffffff	
	3a3198:	0×0000000		ffffff	0x8033		0xfffffff	
0×803	3a31a8:	0×00000f	e0 0×f	ffffff	0x803a	3200	0×00000000	0
0×803	3a31b8:	0×8032794	48 0×8	0327914	0x803a	3289	0×00000000	0

JTAG Adapters

For the most part the adapter can be thought of as just a conduit to the electrical signals. The software/firmware handles the JTAG functionality and determines which target CPUs and feature sets are supported.

Adapter	Software	Cost
BDI3000	Abatron Tools	\$1,000—\$3,000
J-Link	SEGGER J-Link Tools Various IDEs UrJTAG OpenOCD TopJTAG	\$400 (Base) \$70 (EDU)
Flyswatter2	UrJTAG OpenOCD TopJTAG	\$90
GoodFET	GoodFET clients	\$50
USB JTAG NT	USB JTAG NT Tools	\$65

Summary and Final Words

While there is surely more to cover, we have gone through the basics and walked through several examples of system access via JTAG. Keep in mind that a device may implement hidden or undocumented JTAG instructions, which could be used to gain additional system access or circumvent security features. Also it is possible that an off-the-shelf device has been JTAG disabled by the manufacturer, by blowing a fuse or some other hardware/software modification. However, methods for bypassing these restrictions have been publicly demonstrated such as <u>physical</u> <u>attacks</u> against the JTAG fuse mechanism, <u>trivial hardware mods</u>, or firmware patching to re-enable JTAG.

Access Level	Description	Technique
High	On-chip debugging Access internal memory Other functionality	Vendor-specific extensions (e.g. ARM, MIPS)
Medium	Get/set chip pin states Indirectly access external chips	Boundary scan (EXTEST/INTEST)
Low	Enumerate devices on chain Monitor chip pin states	BYPASS Device IDs (IDCODE or "reset trick") Boundary scan (SAMPLE)
Informational	Discover JTAG test points	Visual inspection of PCB Continuity test + chip datasheet Brute force guessing

Looking forward, efforts are underway to implement modern features on top of JTAG such as the <u>IEEE 1500</u> and <u>IEEE 1687</u> standards. These are briefly compared below.

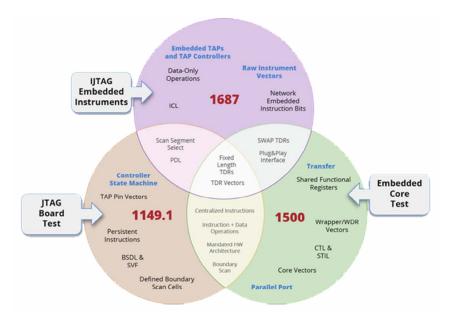


Figure 24: JTAG vs IJTAG vs ECT (Source: asset-intertech.com)

KEY DIFFERENCES BETWEEN JTAG AND IJTAG				
	JTAG	IJTAG		
Control of internal IP	Ad hoc method, vendor specific	Standard protocol		
External interface to internal instrument and third-party IP	Need information from instrument vendor	Plug-and-play and vendor independent		
Coolness	Old and boring	Fancy and new		
Instrument access through hierarchical logic structure	Must be manually defined at the JTAG interface	Automated retargeting from TAP to instrument through logic hierarchy		
Register size	Fixed per instruction	Flexible		

Figure 25: JTAG vs. IJTAG (Source: ElectronicDesign.com)

Hopefully you have expanded your working knowledge of JTAG and can apply these techniques in your research.

References

EEE Std 1149.1-2001 Test Access Port and Boundary-Scan Architecture, IEEE, http://fiona.dmcs.pl/~cmaj/JTAG/JTAG_IEEE-Std-1149.1-2001.pdf

The Test Access Port and Boundary-Scan Architecture, C. Maunder and R. Tulloss, http://fiona.dmcs.pl/~cmaj/JTAG/Test Access Port And Boundary Scan Architecture - C. Maunder R. Tulloss, pdf

IEEE Std 1149.1 (JTAG) Testability Primer, Texas Instruments, http://www.ti.com/lit/an/ssya002c/ssya002c.pdf

JTAG Interface Training, Lauterbach GmbH, http://www.lauterbach.com/pdf/training_jtag.pdf

Blackbox JTAG Reverse Engineering, CCC 2009, https://events.ccc.de/congress/2009/Fahrplan/attachments/1435_JTAG.pdf

Debugging Embedded Systems with JTAG, Tactical Network Solutions, http://www.devttys0.com/wp-content/uploads/2014/04/JTAG_Slides.pdf

Assisted Discovery of On-Chip Debug Interfaces, Grand Idea Studio, Inc., http://www.grandideastudio.com/wp-content/uploads/jtagulator_slides.pdf

Technical Guide to JTAG, XJTAG, https://www.xjtag.com/about-jtag/jtag-a-technical-overview/

What is JTAG and Boundary Scan?, EEVblog #499, https://www.youtube.com/watch?v=TIWILeC5BUs

Boundary Scan Coach, Goepel Electronic, http://www.goepel.com/en/jtag-boundary-scan/education/boundary-scan-coach.html

JTAG, EXTEST, and Hair Loss, Big Mess O' Wires, http://www.bigmessowires.com/2011/06/26/jtag-extest-and-hair-loss/

What's The Difference Between JTAG (IEEE 1149.1) And IJTAG (IEEE P1687)?, Martin Keim, Electronic Design, http://electronicdesign.com/boards/what-s-difference-between-jtag-ieee-11491-andijtag-ieee-p1687

EJTAG Specification, MIPS Technologies, http://downloads.buffalo.nas-central.org/LS2_MIPSel/DevelopmentTools/JTAG/MD00047-2B-EJTAG-SPC-03.10.pdf

EJTAG, Linux-MIPS, https://www.linux-mips.org/wiki/JTAG

MIPS32 M4K Processor Core Software User's Manual, MIPS Technologies, https://imagination-technologies-cloudfront-assets.s3.amazonaws.com/documentation/MD00249-2B-M4K-SUM-02.03.pdf

JTAG, OpenWrt, https://wiki.openwrt.org/doc/hardware/port.jtag

JTAG, DD-WRT, http://www.dd-wrt.com/wiki/index.php/JTAG

JTAG Pinouts, JTAG Test, http://www.jtagtest.com/pinouts/

JTAG Interface Connectors, EmuTec, http://www.emutec.com/jtag_cable_interface_connector_pinout_debugjet.php

1125 17th Street, Suite 1700 Denver, CO 80202 800.574.0896 **www.optiv.com** Optiv is the largest holistic pure-play cyber security solutions provider in North America. The company's diverse and talented employees are committed to helping businesses, governments and educational institutions plan, build and run successful security programs through the right combination of products, services and solutions related to security program strategy, enterprise risk and consulting, threat and vulnerability management, enterprise incident management, security architecture and implementation, training, identity and access management, and managed security. Created in 2015 as a result of the Accuvant and FishNet Security merger, Optiv is a Blackstone (NYSE: BX) portfolio company that has served more than 12,000 clients of various sizes across multiple industries, offers an extensive geographic footprint, and has premium partnerships with more than 300 of the leading security product manufacturers. For more information, please visit www.optiv.com.

© 2016 Optiv Security Inc. All Rights Reserved.