
Technical Paper

The JTAG Interface:
AN ATTACKER’S
PERSPECTIVE

Alain Iamburg
Research Scientist
Optiv

1 Optiv Technical Paper

Introduction

Embedded devices often contain powerful system interfaces that allow engineers to program flash memory,
manipulate a chip’s external pin states, or take full control of a live CPU via On-Chip Debugging (OCD). These
abilities are also useful for vulnerability research and exploitation. This article is intended to provide security
researchers with a practical foundation for working with the JTAG interface, which is one of the most ubiquitous
standards in the industry.

A Brief History of Debug Interfaces

Traditionally, in-circuit testing of embedded devices was carried out with bed-of-nails test fixtures. Spring-
loaded probes would make physical contact with test pads on the PCB to communicate with chips and test for
functionality or failures in different areas including:

• Circuit soldering or component assembly
• Functional interaction between microcontrollers or components

Figure 1: Many Test Pads on a PCB

Figure 2: PCB Bed-of-Nails Test Fixture

2 Optiv Technical Paper

An Introduction to Joint Test Access Group (JTAG)

JTAG (IEEE 1149.1) is one of the most widely deployed test/debug standards for embedded devices. The following
signals are used:

JTAG can be implemented for a single target device, or many on the same board via daisy chaining. This makes it
possible to interact with many chips on a board using only a single port.

Name Description

TMS Mode Select

TCK Clock

TDI Data In

TDO Data Out

nTRST TAP/JTAG Reset (optional; may be required for your target)

nSRST System/CPU Reset
(optional; may be required for your target)

VTRef Target Reference Voltage (may be required for your tools)

Figure 3: JTAG Wiring Diagram (source: Wikipedia)

As newer devices became more densely packed with complex ICs, the old testing methodology became insufficient
to meet the demands of high-performance system designs. Modern debug interfaces addressed these shortcomings
and were eventually equipped with more advanced system debugging functionality.

3 Optiv Technical Paper

The following Marvell board exposes a JTAG header. This board includes silkscreen markings identifying the test
pads as “W_TDI”, “W_TCK”, “W_TDO”, and “W_TMS”.

The following board from a wireless router includes a JTAG header with a silkscreen label, however the header does
not indicate which pads correspond to which JTAG signals.

The JTAG header below does not contain descriptive labels other than “DJ1”.

Figure 4: JTAG Test Points (1)

Figure 5: JTAG Test Points (2)

Figure 6: JTAG Test Points (3)

4 Optiv Technical Paper

Under the hood, the JTAG Test Access Port (TAP) is a 16-state finite state machine made up of the following
components:

• Instruction Register (IR)
› Fixed length
› Used to load instructions

• Data Registers (DRs)
› Variable length
› Used for data I/O

• TAP Controller
› Handles state machine logic
› Implements core JTAG instructions
› Clocks data in and out

This basic framework is leveraged and extended to provide device- or vendor-specific higher-level functionality
such as:

• Reading and writing internal memory
• On-chip debugging (break, step)
• Indirect access to other connected on-board components such as SPI, I²C, or CFI chips via the SoC’s external

pins

The rising edge of the clock (TCK) loads input data from TMS and TDI, and executes state transitions based on the
value of TMS and the current state. The falling edge of the clock sends data out of TDO.

Figure 7: Debug and Test Access Block Boundary (source: Lauterbach GmbH)

5 Optiv Technical Paper

The instruction register is selected to receive data by entering the Shift-IR state, and one of the data registers
is selected by entering the Shift-DR state. The instruction currently loaded in the IR register determines the
particular DR that will be selected. For example, loading the IDCODE instruction would select the device ID data
register, and then entering the Shift-DR state would cause the resulting data to be output on TDO. Register data
resides in a shadow latch until it is updated by entering the Update-xR state. The following diagram illustrates the
TMS signals required to enter different states. Based on this information it can be seen that starting from any given
state, it would take no more than five consecutive high bits on TMS to put the TAP into the Test-Logic-Reset state.
(This is why the nTRST signal is optional.)

As shown in the preceding photos, JTAG test points may appear in different physical arrangements. There may not
even be test headers present, requiring additional effort to locate and probe the JTAG signals.

Figure 8: JTAG Test Logic (source: IEEE TAP and Boundary-Scan Architecture)

Figure 9: TAP Controller State Diagram (source: IEEE TAP and Boundary-Scan Architecture)

6 Optiv Technical Paper

Indeed, a continuity test shows the even-numbered test points of the DJ1 header are tied to ground. A JTAGulator is
used to automate the enumeration of the remaining header pins.

The JTAGulator is controlled via a serial shell that is exposed over its USB interface. The tool can enumerate JTAG
pins on a target device via two scan types that take advantage of the specifications in the JTAG standard. The
following output shows the process of using the JTAGulator (on channels 0-5) to enumerate the odd numbered pins
of the DJ1 header. First the target voltage of 3.3v is selected.

Name Pin Name

nTRST 1 2 GND

TDI 3 4 GND

TDO 5 6 GND

TMS 7 8 GND

TCK 9 10 GND

nSRST 11 12 KEY

Figure 10: JTAGulating the DJ1 Header

Reverse Engineering JTAG Connections
Many standard PCB layouts exist for JTAG headers according to the target platform, which can provide a starting
point for discovering actual pin to signal assignments. The Broadcom CPU from Figure 6 is MIPS-based therefore it
would be reasonable to guess it uses the EJTAG standard pinout:

7 Optiv Technical Paper

$ picocom --baud 115200 /dev/tty.usbserial-A5028BXW
picocom v1.7

port is : /dev/tty.usbserial-A5028BXW
flowcontrol : none
baudrate is : 115200
parity is : none
databits are : 8
escape is : C-a
local echo is : no
noinit is : no
noreset is : no
nolock is : no
send_cmd is : sz -vv
receive_cmd is : rz -vv
imap is :
omap is :
emap is : crcrlf,delbs,

Terminal ready

 Welcome to JTAGulator. Press ‘H’ for available commands.

:h
JTAG Commands:
I Identify JTAG pinout (IDCODE Scan)
B Identify JTAG pinout (BYPASS Scan)
D Get Device ID(s)
T Test BYPASS (TDI to TDO)

UART Commands:
U Identify UART pinout
P UART passthrough

General Commands:
V Set target I/O voltage (1.2V to 3.3V)
R Read all channels (input)
W Write all channels (output)
J Display version information
H Display available commands

:j
JTAGulator FW 1.3
Designed by Joe Grand, Grand Idea Studio, Inc.
Main: jtagulator.com
Source: github.com/grandideastudio/jtagulator
Support: www.parallax.com/support

:v
Current target I/O voltage: Undefined
Enter new target I/O voltage (1.2 - 3.3, 0 for off): 3.3
New target I/O voltage set: 3.3
Ensure VADJ is NOT connected to target!

IDCODE Scan
The JTAGulator’s IDCODE scan identifies the TDO, TCK, and TMS pins by successfully reading out the device ID. A
device may have an IDCODE instruction for reading out the device ID, however the JTAG standard dictates that the
device ID should be loaded into the data register at reset. Therefore by resetting the TAP and then holding it in the
Shift-DR state, we should receive the device ID over TDO. Note that the TDI and nTRST pins are not involved in this
scan.

8 Optiv Technical Paper

The scan enumerated the following pins:

Channel DJ1 Header Pin JTAG Signal

2 5 TDO

3 7 TMS

4 9 TCK

We can observe the data traffic on the wires using a logic analyzer wired in parallel with the JTAGulator:

The scan completed in roughly 0.7 seconds. Zooming in to the last permutation in the trace, it is possible to follow
the state changes and data transfers as shown in Figure 12.

Figure 11: JTAGulator IDCODE Scan (full trace)

:i
Enter starting channel [0]:
Enter ending channel [0]: 5
Possible permutations: 120
Press spacebar to begin (any other key to abort)...
JTAGulating! Press any key to abort...

TDI: N/A
TDO: 2
TCK: 4
TMS: 3
TRST#: 0
TRST#: 1
-
IDCODE scan complete.

Figure 12: JTAGulator IDCODE Scan (final, successful permutation)

https://www.optiv.com/blog/demystifying-hardware-security-part-ii

9 Optiv Technical Paper

Initially the TAP is brought to the reset state and then it is placed into the Shift-DR state, at which point data is
seen on TDO. State changes are indicated by a white dot in the TMS waveform. Recall that from any initial state,
five high bits (“1”s) in a row will bring the TAP into the Test-Logic-Reset state. In case the logic trace is unclear, the
following table illustrates the state changes:

BYPASS Scan
This scan uses the BYPASS instruction to discover the TDI pin. The BYPASS instruction causes input on TDI to be
shifted through a 1-bit data register and out of TDO, skipping the chip’s internal logic. Therefore by sending a bit
pattern to target pins and monitoring the previously discovered TDO pin for matching data, it is possible to discover
the TDI pin. Also since the BYPASS data register is always one bit wide, this scan can determine the number of
devices on the JTAG chain by counting how many bits must be shifted in before the first bit appears on TDO.

We can observe the mechanics of the scan using the Saleae logic analyzer. The trace shows the standard JTAG
BYPASS instruction (all 1s) being shifted into the instruction register. Then, a random bit stream sent out on the
candidate TDI pin is seen coming back out of TDO after a delay of 1 clock cycle. This scan confirms the identity of
the TDI pin and the fact that there is only 1 device on the JTAG chain.

Clock Cycles

TMS 1 1 1 1 1 0 1 0 0...0 1 1 0

TAP
State ? ? ? ?

Test-
Logic-
Reset

Run-Test/Idle Select-DR-
Scan Capture-DR Shift-DR Exit1-DR Update-DR Run-Test/Idle

TDO n/a 0xF801807F n/a

:b
Enter starting channel [0]:
Enter ending channel [5]:
Are any pins already known? [y/N]: y
Enter X for any unknown pin.
Enter TDI pin [0]: x
Enter TDO pin [2]:
Enter TCK pin [4]:
Enter TMS pin [3]:
Possible permutations: 6
Press spacebar to begin (any other key to abort)...
JTAGulating! Press any key to abort...

TDI: 1
TDO: 2
TCK: 4
TMS: 3
TRST#: 0
Number of devices detected: 1

BYPASS scan complete.

10 Optiv Technical Paper

We can also manually send the BYPASS instruction at any time to ensure we have the correct wiring:

The JTAGulator enumerated the JTAG signals and discovered one device on the chain.

Figure 13: JTAGulator BYPASS Scan (final, successful permutation)

Name Pin Name

nTRST 1 2 GND

TDI 3 4 GND

TDO 5 6 GND

TMS 7 8 GND

TCK 9 10 GND

n/a 11 12 GND

:t
Enter TDI pin [1]:
Enter TDO pin [2]:
Enter TCK pin [4]:
Enter TMS pin [3]:
All other channels set to output HIGH.
Number of devices detected: 1
Pattern in to TDI: 00011000111110100011010101111001
Pattern out from TDO: 00011000111110100011010101111001
Match!

11 Optiv Technical Paper

Instruction Data Register Function

BYPASS BYPASS Register (1-bit long) Connects TDI and TDO via the BYPASS register

EXTEST Boundary Scan Register
(BSR)

Connects TDI and TDO via the BSR
Reads/toggles device external pin states
• Pin states are captured in the Capture-DR state
• New values are shifted into the BSR in the Shift-DR state
• New values are applied to device pins in the Update-DR state

SAMPLE /
PRELOAD

Boundary Scan Register
(BSR)

Connects TDI and TDO via the BSR

Device is left in normal functioning mode (i.e. read-only)

BSR is scanned to take a sample of device pin states

Also used to preload test data into the BSR prior to executing EXTEST

IDCODE ID Register
Connects TDI and TDO via the IDCODE register

Returns vendor/device ID

INTEST Boundary Scan Register
(BSR)

Connects TDI and TDO via the BSR

Like EXTEST, but used for the manipulation of on-chip internal logic
(e.g. in a CPLD) instead of external pins

I highly recommend watching EEVblog #499 for a beautiful explanation of JTAG and boundary scan from an
engineer’s perspective.

Figure 14: Core JTAG Functionality (Source: XJTAG)

System Access via JTAG (Low Level)
The following are common JTAG instructions and their corresponding data registers. The first three must be
implemented in a device for it to be considered IEEE 1149.1 compliant, and the last two are optional.

https://www.youtube.com/watch?v=TlWlLeC5BUs

12 Optiv Technical Paper

The Flyswatter2 is a low cost USB to JTAG adapter based on the FTDI FT2232H chip. It is well supported by various
popular software tools.

UrJTAG is lightweight and flexible CLI software that is ideal for generic probing of devices. Some useful commands
are shown below.

Figure 15: Flyswatter2 JTAG Adapter

Command Description

cable <jtag_dongle> Connect and initialize JTAG adapter

detect Detect IR length, chain length, device IDs

discovery Discover JTAG instructions and corresponding data register lengths

register <name> <length> Declare a new data register

instruction length <num_bits> Set the length of the IR

instruction <name> <opcode> <dr> Declare a new instruction and its data register

instruction <name> Change active instruction

shift ir Shift active instruction into device’s IR

shift dr Shift data out of device’s data register

dr Print received data from device’s data register

http://urjtag.org/

13 Optiv Technical Paper

The target Broadcom device was detected with an instruction register length of 32. UrJTAG didn’t recognize the
particular device ID, but it discovered some potential JTAG instructions by brute forcing the instruction register
and measuring the length of the corresponding data register.

UrJTAG lets you manually send commands over a JTAG chain. This may be used to invoke standard and/or
undocumented functionality on devices. The following information is required to prepare a JTAG instruction via
UrJTAG:

• Instruction register length

• Data register name and length

• Instruction name, opcode and associated data register

To execute an instruction, it is shifted into the instruction register. Then, the data register is shifted out to read
the result. UrJTAG handles the required state changes behind the scenes. The ‘dr’ command simply prints the last
contents that were shifted out of the data register. Arbitrary names can be chosen for instructions and registers,
but I am naming these based on knowledge of their purpose.

The ‘0x6’ instruction turned out to be IDCODE. The ‘0x8’ instruction below is more interesting. It has a long data
register of 116 bits, which is likely the BSR containing the pin states of the BGA SoC, and this instruction is likely
SAMPLE or EXTEST. Shifting the data register, the states of the chip’s pins are returned.

UrJTAG 0.10 #2007
Copyright (C) 2002, 2003 ETC s.r.o.
Copyright (C) 2007, 2008, 2009 Kolja Waschk and the respective authors

UrJTAG is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
There is absolutely no warranty for UrJTAG.

warning: UrJTAG may damage your hardware!
Type “quit” to exit, “help” for help.

jtag> cable flyswatter
Connected to libftdi driver.
jtag> detect
IR length: 32
Chain length: 1
Device Id: 00010000000111001010000101111111 (0x101CA17F)
 Manufacturer: Broadcom (0x17F)
 Unknown part! (0000000111001010) (/usr/share/urjtag/broadcom/PARTS)
jtag> discovery
Detecting IR length ... 32
Detecting DR length for IR 11111111111111111111111111111111 ... 1
Detecting DR length for IR 00000000000000000000000000000000 ... 1
Detecting DR length for IR 00000000000000000000000000000001 ... warning: TDO seems to be stuck at 0
Detecting DR length for IR 00000000000000000000000000000010 ... warning: TDO seems to be stuck at 0
Detecting DR length for IR 00000000000000000000000000000011 ... warning: TDO seems to be stuck at 0
Detecting DR length for IR 00000000000000000000000000000100 ... warning: TDO seems to be stuck at 0
Detecting DR length for IR 00000000000000000000000000000101 ... 37
Detecting DR length for IR 00000000000000000000000000000110 ... 32
Detecting DR length for IR 00000000000000000000000000000111 ... 1
Detecting DR length for IR 00000000000000000000000000001000 ... 116

jtag> instruction length 32
jtag> register ID 32
jtag> instruction IDCODE 00000000000000000000000000000110 ID
jtag> instruction IDCODE
jtag> shift ir
jtag> shift dr
jtag> dr
00010000000111001010000101111111 (0x101CA17F)

14 Optiv Technical Paper

When running this instruction again with the WPS button held down, the same data is returned but with one
bit cleared. Notice the data marked in red. This bit represents the SoC’s external I/O pin that is connected to the
button.

Figure 16: WPS Button

This shows how to monitor SoC pin states at a low level over JTAG. New pin states could be toggled by shifting data
into the DR via “dr <data>.” I am only touching on some functionality of UrJTAG.

Another tool, TopJTAG Probe, is useful for visualizing boundary scan operations while reading or toggling
individual pins. The only required input is a Boundary Scan Description Language (BSDL) file, which identifies a
SoC’s pin mappings and JTAG instructions/registers. Some sources for BSDL files are here, here, and here.

Figure 17: TopJTAG Probe Boundary Scan Software

jtag> register BSR 116
jtag> instruction SAMPLE 00000000000000000000000000001000 BSR
jtag> instruction SAMPLE
jtag> shift ir
jtag> shift dr
jtag> dr
000001000001010000000000000000000001010100010101000100010000000000000000000000000001010101010101000101000000
00010001 (0x00000000000001000000155514011)

jtag> print instructions
 Active Instruction Register
--
 X SAMPLE BSR
 IDCODE ID
jtag> shift dr
jtag> dr
000001000001010000000000000000000001010100010101000100010000000000000000000000000001010101010101000100000000
00010001 (0x00000000000001000000155510011)

http://www.topjtag.com/probe/
http://bsdl.info/
https://www.xjtag.com/about-jtag/bsdl-files/
http://www.corelis.com/support/BSDL.htm

15 Optiv Technical Paper

System Access via JTAG (Medium Level)
The ability to read and toggle a chip’s external pins is intriguing because it means we can communicate with other
connected chips on the board. The following diagram illustrates the data flow (in this case, depicting a parallel flash
chip).

Figure 18: Accessing External Flash via JTAG Boundary Scan (Source: Intellitech.com)

Various software tools exist for dumping external flash via boundary scan, such as UrJTAG, J-Flash, and TopJTAG
Flash Programmer. The USB JTAG NT adapter supports boundary scan and some vendor extensions via its
accompanying software as shown below.

Figure 19: USB JTAG NT Adapter

USBJTAG NT detected and dumped an external W25Q64CV serial flash chip via the EXTEST instruction.

Copyright (C) 2010-2015
USB JTAG NT 0.71a
Target: E800
-detect
IDCODE 1008C17F
Broadcom BCM008C
IMPCODE 60414000
EJTAG V2.6
DMA not supported
Found Address= 00000000 W25Q64CV
-getram 0 800000
Time 00:08:30 (.697)

http://www.topjtag.com/flash-programmer/
http://www.topjtag.com/flash-programmer/
http://www.usbjtag.com/jtagnt/index.php

16 Optiv Technical Paper

Figure 20: SPI Flash Dumped via JTAG Boundary Scan

This was done by shifting bits through the JTAG chain and directly interfacing with the pins of the attached SPI
chip.

https://www.optiv.com/blog/demystifying-hardware-security-part-iii
https://www.optiv.com/blog/demystifying-hardware-security-part-iii

17 Optiv Technical Paper

Figure 21: JTAG Debug/Programming Logic (Source: XJTAG)

Instruction Function

IMPCODE Selects the implementation register

ADDRESS Selects the address register

DATA Selects the data register

CONTROL Selects the EJTAG control register

EJTAGBOOT Selects the bypass register and sets EjtagBrk, ProbEn and ProbTrap to 1 as reset value

TCBCONTROLA Selects the TCBTCONTROLA register in the trace control block

TCBDATA Selects the TCBDATA register in the trace
control block

For example the following are a subset of instructions defined by EJTAG, which is a MIPS extension of JTAG:

The SEGGER J-Link adapter is suitable for professional engineering work and has native support for many target
chips such as the ARM-based Marvell device in Figure 4.

System Access via JTAG (High Level)
As previously shown, the JTAG interface defines low-level data I/O and basic logic. In order to implement
functionality such as on-chip debugging, it is necessary to invoke vendor-specific instructions, data registers, and
initialization sequences.

http://downloads.buffalo.nas-central.org/LS2_MIPSel/DevelopmentTools/JTAG/MD00047-2B-EJTAG-SPC-03.10.pdf

18 Optiv Technical Paper

Figure 22: J-Link JTAG Adapter

The J-Flash software includes vendor-specific JTAG initialization sequences for a large number of target chips
including virtually every ARM device, allowing access to internal memory.

OpenOCD is a tool that is geared towards embedded system debugging and programming. Ideally, once the bridge
is established it is possible to obtain low-level control of the target CPU in much the same way a local debugger
controls the CPU on a PC. OpenOCD includes support for various JTAG adapters and CPU targets via configuration
files. We will use a Linksys WRT54GL as a target device.

The relevant inputs are:

• Adapter Configuration (jlink.cfg)
› Defines and configures the link driver for talking with the JTAG adapter

• Board Configuration (linksys-wrt54gl.cfg)
› Defines attached CFI flash and memory mapping

• Target Configuration (bcm5352e.cfg)
› Defines CPU ID and IR length
› Defines the architecture and bus driver

Figure 23: Dumping Internal Flash via JTAG

http://openocd.org/
http://openocd.org/doc/html/Debug-Adapter-Hardware.html#Debug-Adapter-Hardware

19 Optiv Technical Paper

OpenOCD serves a CLI control service on port 4444.

$ cat interface/jlink.cfg
#
Segger J-Link
#
http://www.segger.com/jlink.html
#

interface jlink
transport select jtag
adapter_khz 6000

$ cat board/linksys-wrt54gl.cfg
#
Linksys WRT54GL v1.1
#

source [find target/bcm5352e.cfg]

set partition_list {
 CFE { Bootloader 0x1c000000 0x00040000 }
 firmware { “Kernel+rootfs” 0x1c040000 0x003b0000 }
 nvram { “Config space” 0x1c3f0000 0x00010000 }
}

External 4MB NOR Flash (Intel TE28F320C3BD90 or similar)
set _FLASHNAME $_CHIPNAME.flash
flash bank $_FLASHNAME cfi 0x1c000000 0x00400000 2 2 $_TARGETNAME

$ cat target/bcm5352e.cfg
set _CHIPNAME bcm5352e
set _CPUID 0x0535217f

jtag newtap $_CHIPNAME cpu -irlen 8 -expected-id $_CPUID

set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME mips_m4k -endian little -chain-position $_TARGETNAME

gdb_memory_map disable

$_TARGETNAME configure -event gdb-attach {
 reset
 halt
 }

$ sudo openocd -f interface/jlink.cfg -f board/linksys-wrt54gl.cfg
Open On-Chip Debugger 0.10.0-dev-00212-g50d4f76-dirty (2016-08-22-13:29)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
adapter speed: 6000 kHz
Info : No device selected, using first device.
Info : J-Link ARM V8 compiled Sep 22 2014 23:26:43
Info : Hardware version: 8.00
Info : VTarget = 3.351 V
Info : clock speed 6000 kHz

20 Optiv Technical Paper

In addition OpenOCD starts up a GDB server on port 3333, providing a familiar debugging environment of the live
device.

$ telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.
Open On-Chip Debugger
> scan_chain
 TapName Enabled IdCode Expected IrLen IrCap IrMask
-- ------------------- -------- ---------- ---------- ----- ----- ------
 0 bcm5352e.cpu Y 0x0535217f 0x0535217f 8 0x01 0x03
> targets
 TargetName Type Endian TapName State
-- ------------------ ---------- ------ ------------------ ------------
 0* bcm5352e.cpu mips_m4k little bcm5352e.cpu running
> halt
bcm5352e.cpu: target state: halted
target halted in MIPS32 mode due to debug-request, pc: 0x80003260
> targets
 TargetName Type Endian TapName State
-- ------------------ ---------- ------ ------------------ ------------
 0* bcm5352e.cpu mips_m4k little bcm5352e.cpu halted
>

gdb$ set architecture mips
The target architecture is assumed to be mips
gdb$ target remote localhost:3333
Remote debugging using localhost:3333
gdb$ i r
 zero at v0 v1 a0 a1 a2 a3
 R0 00000000 00000000 01000000 00000001 9fc2b590 8032b590 00010a40 00000001
 t0 t1 t2 t3 t4 t5 t6 t7
 R8 0c0cabce 1fc00000 aa55beef 00000000 00000008 00000200 9fc02278 9fc037f4
 s0 s1 s2 s3 s4 s5 s6 s7
 R16 00000002 1c266e56 000001c6 803a3312 00000002 a0000000 803a3138 00000000
 t8 t9 k0 k1 gp sp s8 ra
 R24 ffffffff 9fc03b10 00004000 9fc02f9c 00000000 803a3128 bfc02180 1f900000
 status lo hi badvaddr cause pc
 00400000 00002000 00000000 00000000 00000000 9fc02334
 fcsr fir
 00000000 00000000
gdb$ x/20i $pc
=> 0x9fc02334: sw t0,0(a1)
 0x9fc02338: addi a0,a0,4
 0x9fc0233c: addi a1,a1,4
 0x9fc02340: addi a2,a2,-4
 0x9fc02344: bnez a2,0x9fc02330
 0x9fc02348: nop
 0x9fc0234c: nop
 0x9fc02350: lui a0,0x5a42
 0x9fc02354: ori a0,a0,0x5353
 0x9fc02358: bal 0x9fc02360
 0x9fc0235c: nop
 0x9fc02360: nop
 0x9fc02364: lui k1,0x8030
 0x9fc02368: addiu k1,k1,9056
 0x9fc0236c: subu ra,ra,k1
 0x9fc02370: lui k1,0x8030
 0x9fc02374: addiu k1,k1,8232
 0x9fc02378: addu k1,k1,ra
 0x9fc0237c: lw k1,4(k1)
 0x9fc02380: bal 0x9fc02388
 0x9fc02384: nop
gdb$ x/20x $sp+0x50
0x803a3178: 0x803276e4 0xffffffff 0x00000001 0xffffffff
0x803a3188: 0x00000000 0x00000000 0x00000000 0xffffffff
0x803a3198: 0x00000007 0xffffffff 0x8033f0a8 0xffffffff
0x803a31a8: 0x00000fe0 0xffffffff 0x803a3200 0x00000000
0x803a31b8: 0x80327948 0x80327914 0x803a3289 0x00000000

21 Optiv Technical Paper

JTAG Adapters
For the most part the adapter can be thought of as just a conduit to the electrical signals. The software/firmware
handles the JTAG functionality and determines which target CPUs and feature sets are supported.

Adapter Software Cost

BDI3000 Abatron Tools $1,000—$3,000

J-Link

SEGGER J-Link Tools
Various IDEs
UrJTAG
OpenOCD
TopJTAG

$400 (Base)

$70 (EDU)

Flyswatter2
UrJTAG
OpenOCD
TopJTAG

$90

GoodFET GoodFET clients $50

USB JTAG NT USB JTAG NT Tools $65

Summary and Final Words

While there is surely more to cover, we have gone through the basics and walked through several examples of
system access via JTAG. Keep in mind that a device may implement hidden or undocumented JTAG instructions,
which could be used to gain additional system access or circumvent security features. Also it is possible that an off-
the-shelf device has been JTAG disabled by the manufacturer, by blowing a fuse or some other hardware/software
modification. However, methods for bypassing these restrictions have been publicly demonstrated such as physical
attacks against the JTAG fuse mechanism, trivial hardware mods, or firmware patching to re-enable JTAG.

Access Level Description Technique

High
On-chip debugging
Access internal memory
Other functionality

Vendor-specific extensions (e.g. ARM, MIPS)

Medium
Get/set chip pin states
Indirectly access external chips

Boundary scan
(EXTEST/INTEST)

Low
Enumerate devices on chain
Monitor chip pin states

BYPASS
Device IDs (IDCODE or “reset trick”)
Boundary scan (SAMPLE)

Informational Discover JTAG test points
Visual inspection of PCB
Continuity test + chip datasheet
Brute force guessing

https://www.blackhat.com/presentations/bh-europe-08/Tarnovsky/Presentation/bh-eu-08-tarnovsky.pdf
https://www.cl.cam.ac.uk/~sps32/ECRYPT2011_1.pdf
http://www.devttys0.com/2014/02/re-enabling-jtag-and-debugging-the-wrt120n/

22 Optiv Technical Paper

Looking forward, efforts are underway to implement modern features on top of JTAG such as the IEEE 1500 and
IEEE 1687 standards. These are briefly compared below.

Hopefully you have expanded your working knowledge of JTAG and can apply these techniques in your research.

Figure 24: JTAG vs IJTAG vs ECT (Source: asset-intertech.com)

Figure 25: JTAG vs. IJTAG (Source: ElectronicDesign.com)

http://grouper.ieee.org/groups/1500/
https://standards.ieee.org/findstds/standard/1687-2014.html

Optiv is the largest holistic pure-play cyber security solutions provider in North Ameri-
ca. The company’s diverse and talented employees are committed to helping businesses,
governments and educational institutions plan, build and run successful security
programs through the right combination of products, services and solutions related
to security program strategy, enterprise risk and consulting, threat and vulnerability
management, enterprise incident management, security architecture and implemen-
tation, training, identity and access management, and managed security. Created in
2015 as a result of the Accuvant and FishNet Security merger, Optiv is a Blackstone
(NYSE: BX) portfolio company that has served more than 12,000 clients of various sizes
across multiple industries, offers an extensive geographic footprint, and has premium
partnerships with more than 300 of the leading security product manufacturers. For
more information, please visit www.optiv.com.
© 2016 Optiv Security Inc. All Rights Reserved.

11.16 | F1

References

EEE Std 1149.1-2001 Test Access Port and Boundary-Scan Architecture, IEEE, http://fiona.dmcs.pl/~cmaj/JTAG/JTAG_IEEE-Std-1149.1-2001.pdf

The Test Access Port and Boundary-Scan Architecture, C. Maunder and R. Tulloss, http://fiona.dmcs.pl/~cmaj/JTAG/Test Access Port And Boundary Scan Architecture - C. Maunder R. Tulloss.pdf

IEEE Std 1149.1 (JTAG) Testability Primer, Texas Instruments, http://www.ti.com/lit/an/ssya002c/ssya002c.pdf

JTAG Interface Training, Lauterbach GmbH, http://www.lauterbach.com/pdf/training_jtag.pdf

Blackbox JTAG Reverse Engineering, CCC 2009, https://events.ccc.de/congress/2009/Fahrplan/attachments/1435_JTAG.pdf

Debugging Embedded Systems with JTAG, Tactical Network Solutions, http://www.devttys0.com/wp-content/uploads/2014/04/JTAG_Slides.pdf

Assisted Discovery of On-Chip Debug Interfaces, Grand Idea Studio, Inc., http://www.grandideastudio.com/wp-content/uploads/jtagulator_slides.pdf

Technical Guide to JTAG, XJTAG, https://www.xjtag.com/about-jtag/jtag-a-technical-overview/

What is JTAG and Boundary Scan?, EEVblog #499, https://www.youtube.com/watch?v=TlWlLeC5BUs

Boundary Scan Coach, Goepel Electronic, http://www.goepel.com/en/jtag-boundary-scan/education/boundary-scan-coach.html

JTAG, EXTEST, and Hair Loss, Big Mess O’ Wires, http://www.bigmessowires.com/2011/06/26/jtag-extest-and-hair-loss/

What’s The Difference Between JTAG (IEEE 1149.1) And IJTAG (IEEE P1687)?, Martin Keim, Electronic Design, http://electronicdesign.com/boards/what-s-difference-between-jtag-ieee-11491-and-
ijtag-ieee-p1687

EJTAG Specification, MIPS Technologies, http://downloads.buffalo.nas-central.org/LS2_MIPSel/DevelopmentTools/JTAG/MD00047-2B-EJTAG-SPC-03.10.pdf

EJTAG, Linux-MIPS, https://www.linux-mips.org/wiki/JTAG

MIPS32 M4K Processor Core Software User’s Manual, MIPS Technologies, https://imagination-technologies-cloudfront-assets.s3.amazonaws.com/documentation/MD00249-2B-M4K-SUM-02.03.pdf

JTAG, OpenWrt, https://wiki.openwrt.org/doc/hardware/port.jtag

JTAG, DD-WRT, http://www.dd-wrt.com/wiki/index.php/JTAG

JTAG Pinouts, JTAG Test, http://www.jtagtest.com/pinouts/

JTAG Interface Connectors, EmuTec, http://www.emutec.com/jtag_cable_interface_connector_pinout_debugjet.php

1125 17th Street, Suite 1700
Denver, CO 80202
800.574.0896
www.optiv.com

