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Introduction 
In March 2013, during the annual Pwn2Own competition at CanSecWest, Accuvant LABS’ Joshua J. Drake 

demonstrated a successful attack against Oracle’s Java Runtime Environment (JRE). The demonstration 

proved exploiting memory corruption vulnerabilities in Oracle’s JRE 7 is still possible despite modern 

exploit mitigations. This post aims to document his participation in the event as well as the gritty 

technical details of the exploit used in the attack. We begin by discussing some background of the event 

and the chosen target. Next, we detail the specific implementation issues that allowed a successful 

compromise. After that, we discuss the exploitation primitives provided by these issues. Finally, we take 

a technical deep dive into the specific techniques used to achieve arbitrary code execution. 

NOTE: These issues were addressed in Java 7 Update 21 which was released on April 16th, 20131. If you 

have not updated (or eliminated) your Java installations, please take the time to do so before reading 

on. 

Pwn2Own 2013 Background 
Each year, the Zero Day Initiative (ZDI) folks host a competition at the CanSecWest conference. In this 

event, competitors have the chance to win big prizes in exchange for demonstrating working exploits 

against state of the art consumer computer systems. The rules and prize amounts change each year. 

This year included an impressive list of targets with a correspondingly attractive target-specific prize 

package for each2. 

Early in the contest, the ZDI team drew the names of the registered participants to determine the order 

in which they will be given a chance to win. Many researchers dislike this aspect of the game since 

people generally do not register unless their exploit is certain to succeed. Hence the first person to go 

typically wins. Many researchers event went so far as to call this “Rand2Pwn”, or similar. However, this 

year the ZDI team decided to award all registered participants that were able to demonstrate a working 

exploit. Combined with increased prize amounts, these changes will likely increase participation and 

make for a more exciting and rewarding event going forward. 

Target: Oracle JRE 
Having done significant prior research into memory corruption vulnerabilities in Oracle’s Java Runtime3, 

it was no surprise that Joshua chose this target to participate in Pwn2Own. Per usual, the contest 

required exploiting the latest version of JRE at the time of the event. In this case, the target machine ran 

Java SE 7 Update 17 on the Windows 8 operating system. Data Execution Prevention (DEP) and Address 

Space Layout Randomization (ASLR) are in full effect in this configuration, which complicated 

exploitation significantly, as we will see later. 

                                                             
1 http://www.oracle.com/technetwork/topics/security/javacpuapr2013-1928497.html 
2 http://dvlabs.tippingpoint.com/blog/2013/01/17/pwn2own-2013 
3 http://www.accuvant.com/capability/accuvant-labs/security-research/featured-presentation/exploiting-java-
memory-corruption-vulnerabilities 

http://dvlabs.tippingpoint.com/blog/2013/01/17/pwn2own-2013
http://www.accuvant.com/capability/accuvant-labs/security-research/featured-presentation/exploiting-java-memory-corruption-vulnerabilities
http://www.accuvant.com/capability/accuvant-labs/security-research/featured-presentation/exploiting-java-memory-corruption-vulnerabilities


The Attack 
The attack used was an untrusted Java Applet delivered to an instance of the IE10 Web browser. In this 

attack scenario an unsuspecting victim would be exploited when browsing to a website. Our 

demonstration hinged on the Pwn2Own staff visiting such a site intentionally. Although such attacks are 

often conducted using an email containing a URL, there are other delivery methods available. As an 

example, the Applet could also be delivered via MITM techniques or even embedded in a compromised 

trusted site. 

The page delivered to the victim contains an APPLET HTML tag, which in turn includes a URL to a Java 

Archive (JAR). This archive contains the unsigned Java applet code and our specially crafted OpenType 

font. The JAR will be automatically downloaded by the Java plugin loaded in the target system’s 

browser. Once downloaded, the Java plugin caches the JAR and launches the JRE for further processing. 

Thankfully, Oracle took steps to reduce the attack surface of JRE 7 in Update 11. In this release they 

implemented a “click-to-play” style dialog box preventing untrusted Applets from running without user 

interaction. This brings the level of interaction required for untrusted Applets in line with those for self-

signed or CA signed Applets. Since user interaction is now required, users have the chance to avoid 

executing potentially malicious Applets. Further, receiving an unexpected dialog box requesting a Java 

applet should raise suspicions since very few legitimate sites use Java. 

When the exploit Applet is executed, it leverages two issues in order to execute an arbitrary payload. 

The specific steps taken to bridge the gap are detailed below. As is typical for exploit demonstrations, 

we chose a payload that executes the Windows “calc.exe” binary. 

Vulnerabilities and Primitives 
As was declared during the demonstration, the exploit Applet utilizes a pair of memory corruption 

vulnerabilities in the way Oracle’s JRE processes fonts. These issues specifically lie within the handling of 

OpenType Fonts, implemented in the t2k.dll module. The ability to use OTF fonts was introduced with 

the release of JRE 7. Therefore older versions are not affected. Oracle JRE font processing relies on 

licensed code that is not part of OpenJDK, also eliminating OpenJDK from the list of affected software. 

However, these two issues do affect all architectures and operating systems supported by JRE 7. 

Although JRE 6 is not affected, the vulnerable code is present in the JDK 6 source code released under 

the Java Research License (JRL). To enable the feature, Oracle likely defined the ENABLE_CFF pre-

processor macro when building JRE 7. Code excerpts included in the following text were taken from the 

“jdk-6u38-ea-src-b04-jrl-31_oct_2012.jar” archive.  

The OTF format allows fonts to calculate the exact pixels that will be rendered for different displays by 

incorporating program code consisting of a stream of operators inside the OTF file. This program code is 

then executed within a small Virtual Machine of sorts. The two leveraged issues lie in two of these 

operators, load and store. 

When researching the OTF format, Accuvant LABS discovered that these two operators had been 

deprecated along the way. The version of the specification released in 1998 includes information about 



these two operators, but the version released in 2000 does not. Instead, it contains the text “Section 

4.5, Storage Operators: the store and load commands were removed.” It is interesting to see that the 

developers continued to support these operators despite them being removed from the specification. 

To understand the issues fully, it is important to know that the virtual machine provides access to 

several pieces of memory when executing the operators. First, there is a stack area named gStackValues 

that stores 32-bit values. Second, there is an array, named buildCharArray that is used for certain 

operators. Third, there are three vector arrays named reg_WeightVector, reg_NormalizedDesignVector, 

and reg_UserDesignVector. Understanding how these areas of memory are used is essential to our 

approach to exploiting the vulnerabilities, as we will see later. 

The vulnerability occurs in a function called Type2BuildChar. This function is shown below in Figure 1. 

JRE_SOURCE/j2se/src/share/native/sun/font/t2k/t1.c 
3638 static void Type2BuildChar( CFFClass *t, InputStream *in, int byteCount, int nestingLevel ) 
3639 { 
.... 
3654         v1 = ReadUnsignedByteMacro( in ); 
.... 
3659             switch( v1 ) { 
.... 
3804               case 12:  /* escape */ 
3805                 v2 = ReadUnsignedByteMacro( in ); 
.... 
3807                 switch( v2 ) { 
 
Figure 1 

As seen in the Type2BuildChar function in Figure 1, the data within the CharStrings portion of the CFF 

table within the OpenType font are processed one byte at a time. First, a byte is read on line 3654. 

Depending on the value of this byte, the switch statement on line 3659 dispatches processing.  

Only one operator processed at this level is involved in this vulnerability. That operator is the escape 

operator handled on line 3804. When this operator is encountered, another byte is read on line 3805. 

This value is then used in a second switch statement on 3807, which dispatches processing to several 

arithmetic, storage, and conditional operators. 

First, we will examine the load operator. Consider the following code excerpt from Oracle’s JRE source 

code released under the JRL license. 



JRE_SOURCE/j2se/src/share/native/sun/font/t2k/t1.c 
3917                   case 13:  /* load */ 
.... 
3920                         int index, regItem, count, i1; 
.... 
3924                         regItem = gStackValues[ gNumStackValues + 0 ] >> 16; 
3925                         index = gStackValues[ gNumStackValues + 1 ] >> 16; 
3926                         count = gStackValues[ gNumStackValues + 2 ] >> 16; 
.... 
3929                         switch ( regItem ) { 
3930                           case 0: 
3931                             for ( i1 = 0; i1 < count; i1++ ) { 
3932                                 t->topDictData.buildCharArray[index + i1] =  

t->topDictData.reg_WeightVector[i1]; 
3933                             } 
3934                             break; 
 

Figure 2 

The source code that handles the load operator is shown above in Figure 2. The switch case for this 

operator begins on line 3917. The author begins by reading three values from the stack on lines 3924 

through 3926. After these values are read, the code shifts the lower 16-bits away. Although the variables 

that contain these values were declared with the int type, shifting them limits their value to a 16-bit 

range. Keep in mind that shifting a signed integer preserves the value’s sign. 

The value of regItem determines which of the three vector arrays will be used for the imminent copy 

operation. On line 3931, a loop executes operating on the count and index values, which are under 

attacker control. Line 3932 contains the first vulnerability. The same issue is also present on lines 3932 

and 3937, which were omitted for brevity. In this statement, the count value is not validated. This allows 

an attacker to read 32-bit values from beyond the end any of the three vector arrays and store them to 

arbitrary 16-bit offsets of the buildCharArray. This allows reading existing memory contents in an 

indirect fashion and eventually enables us to overcome ASLR. 

The second vulnerable operator used by this exploit is the store operator. 

JRE_SOURCE/j2se/src/share/native/sun/font/t2k/t1.c 
3840                   case 8:   /* store */ 
.... 
3846                         int index, j, regItem, count, i1; 
3847 
3848                         regItem = gStackValues[ gNumStackValues + 0 ] >> 16; 
3849                         j   = gStackValues[ gNumStackValues + 1 ] >> 16; 
3850                         index = gStackValues[ gNumStackValues + 2 ] >> 16; 
3851                         count = gStackValues[ gNumStackValues + 3 ] >> 16; 
3852 
3853                         assert( index >= 0 && index < t->topDictData.lenBuildCharArray ); 
3854                         switch ( regItem ) { 
3855                           case 0: 
3856                             for ( i1 = 0; i1 < count; i1++ ) { 
3857                                 t->topDictData.reg_WeightVector[j + i1] =  
                                         t->topDictData.buildCharArray[index + i1]; 
3858                             } 
3859                             break; 
 
Figure 3 



The source code dealing with the store operator is shown above in Figure 3. On line 3840, the switch 

case for this operator begins, showing the byte value of eight. The code then reads several values from 

the stack on lines 3848 through 3851. Again, similar to processing the load operator, the low 16-bits are 

shifted away. 

Interestingly, the developer has added an assert statement on line 3853. Fortunately for us, assert 

statements are omitted from release builds. If it this were compiled in, it would in fact limit the 

primitives provided by this vulnerability. 

Depending on the value of regItem, the switch statement on line 3854 dispatches processing. On line 

3856, a loop executes operating on the count, j, and index values, which are under attacker control. Line 

3857 contains the second vulnerability used by this exploit. The same issue is also present on lines 3862 

and 3867, which were omitted for brevity. In this statement, the j and index values are not validated. 

This lack of validation allows an attacker to read 32-bit values from arbitrary 16-bit offsets of the 

buildCharArray and write them to arbitrary 16-bit signed indexes of any of the three vector arrays. This 

unintended capability allows copying existing memory contents in a relative fashion, using only 

displacement values.  

In theory, the issue in the store operator would allow exploitation without using the load operator. 

However, analyzing processing within the Type2BuildChar function revealed that using the load operator 

provides a quicker and easier path to successful exploitation. 

Exploitation 
Using the powerful primitives offered by these bugs, we are able to corrupt key elements of various 

structures used by the t2k.dll library to process OpenType CFF fonts. Most importantly, we are able to 

leverage the issue in the store operator to overwrite the buildCharArray pointer value. To achieve high 

reliability, we utilize the issue in the load operator to read existing pointer values from within the data 

structure that contains the buildCharArray pointer. When combining these issues together, along with 

several other VM operators, we are able to read, write, and perform arithmetic on nearly arbitrary 

values in memory. 

The other operators used include; get, put, index, add, sub, and dup. We do not document the source 

code for these operators in great detail since we do not leverage any undefined behavior in them. Figure 

4 below explains the implementation details of these operators. Many of the operators are constrained 

by the lenBuildCharArray value, which is the number of 32-bit buildCharArray can hold. Fortunately, this 

value is set while processing the Top DICT index, and is fully under our control. 

Operator Description 

number Stores a 32-bit value that we control to the top of the operator stack. 
get Reads a 32-bit value from an index of buildCharArray. We control the 

index, but it is validated to be between zero and lenBuildCharArray. The 
resulting value is pushed onto the operator stack. 

put Stores the 32-bit value from the top of the operator stack to an index of 
buildCharArray. We control the index, but it is required to be between 



Operator Description 

zero and lenBuildCharArray. 
index Reads a 32-bit value from the specified index of the operator stack. We 

control the index value, but it will always be within the bounds of the 
operator stack. 

add Adds the top two operator stack values and stores the result back to the 
top of the operator stack. The top value is discarded in the process. 

sub Subtracts the value from the top of the operator stack from the value 
below it. The resulting value will be on top of the operator stack with the 
subtrahend removed. 

dup Duplicates the value on the top of the operator stack. 
Figure 4 

Hijacking the flow control of the application in a reliable fashion takes place in five stages. First, we 

dynamically resolve the base address of the t2k.dll library using our primitives. Second, we corrupt 

memory in order to hijack the control flow. Third, we resolve the base address of the msvcr100.dll 

library, which was chosen since it is shipped with JRE 7 and is unlikely to change in future releases. In 

stage four, we dynamically build a ROP chain on the stack in order to bypass DEP. Finally, in stage five, 

we take control of the program counter and enter the payload phase. 

 

Figure 5 

The store operator is crucial to successful exploitation. We use this operator to modify buildCharArray to 

point at several locations throughout the course of the exploit. The sequence of pointer values used is 

shown throughout the figures in the rest of this section. One limitation to this primitive is that the value 

that overwrites the buildCharArray pointer is read from within itself. This is especially problematic in 

cases where we point at read-only memory, as we do in Stage 3. 

In the first stage, we indirectly resolve the address of the t2k.dll library in order to bypass ASLR. We 

perform the address resolution by following several pointer members of various data structures, 

overwriting buildCharArray with each value as we obtain it. First, we use the load operator to read a 

pointer value located after the three vector arrays. This pointer, named string, is a pointer to a 

CFFIndexClass structure. The CFFIndexClass structure contains another pointer, mem, which points to a 

structure of type tsiMemObject. Figure 6 depicts the memory layout of relevant fields of the CFFClass 

structure and shows buildCharArray pointing to the CFFIndexClass. Now we can simply use the get 

operator to read the mem pointer into the operator stack. 



 

Figure 6 

After pointing buildCharArray at the tsiMemObject structure, as shown in Figure 6, we can access the 

structure members. The most vital item stored in this structure is a jmp_buf, which is used to hold an 

execution context for use with the setjmp and longjmp functions. This jmp_buf is initialized by a call to 

setjmp that occurs within the New_sfntClassLogical function. Several register values, including the frame 

pointer, stack pointer, and return address, are stored in the jmp_buf. The return address saved within 

the jmp_buf holds an address that points at the t2k.dll library’s code segment. We simply subtract a pre-

determined relative virtual address (RVA) from the return address to obtain the base address. 

 

Figure 7 

Next, we begin stage two by adjusting the saved stack pointer and return address values within the 

jmp_buf. After we do this, any call to longjmp will transfer execution to a location of our choosing, with 

a stack pointer of our choosing. We adjust the saved return address to point at a return instruction 

within the t2k.dll library. This is accomplished by adding a pre-determined RVA to the resolved base 

address. For the saved stack pointer, we subtract a fixed amount to point the stack value into an unused 

portion of stack memory. After modifying these values, we proceed to stage three. 



 

Figure 8 

In stage three, we resolve the base address of the msvcr100.dll library by utilizing the import address 

table (IAT) and data section of the t2k.dll library. First, we build the address of the first import by adding 

the RVA of the IAT to the resolved t2k.dll base address. Next, we overwrite the buildCharArray to point 

at the calculated address, as shown in Figure 8 above. Now, we read the value of the first import, which 

happens to be the sqrt function. We then subtract the pre-determined RVA for the sqrt function within 

the msvcr100.dll library. With the base address of msvcr100.dll resolved, we can proceed to stage four. 

 

Figure 9 

Stage four consists of building a dynamic ROP stager and payload on the stack. To do this, we modify 

buildCharArray to point at the adjusted saved stack pointer from the jmp_buf. Since buildCharArray 

currently points at the IAT of t2k.dll, and that area of memory is read-only, we write to t2k.dll’s data 

section. This is easily accomplished by ensuring that we set lenBuildCharArray to a sufficiently large size. 

Once buildCharArray is pointing at unused stack memory, shown in Figure 9 above, we use the put 

operator to write a mixture of constants and values dynamically calculated based on the resolved base 

address of msvcr100.dll. This is commonly referred to as “building a dynamic ROP chain.” We present 

more information about the format of the ROP stager and payload in the next section, Payload 

Construction. 

With our dynamic ROP stager and payload in place, we proceed to stage five. This stage simply consists 

of launching our ROP stager by forcing an error condition that leads to a call to longjmp. We accomplish 



this by repeatedly calling the dup operator to fill the operator stack. Once full, a call to tsi_Error will call 

longjmp and our ROP stager proceeds to allocate RWX memory, copy our machine code payload into it, 

and execute it. 

Throughout these five stages, we never operate outside the bounds of any of the data structures 

involved. Operating within the bounds of these structures provides an increased level of reliability since 

heap layout issues, such as adjacency and determinism, are not in play. Instead we rely only on data 

structure offsets and RVA values that are calculated at compile time and remain fixed thereafter. 

Accuvant LABS’ examined all existing releases of Oracle JRE 7 and found these values to be quite stable. 

Payload Construction 
The payload of this exploit is quite complex and is comprised of four distinct stages, as shown in Figure 

10. Together, these stages handle bypassing DEP, executing an arbitrary payload, and gracefully 

continuing the normal execution flow. In the end, this architecture results in a highly modular and 

reliable design. 

  

Figure 10 

Stage 1 consists of a return-oriented-programming (ROP) stager that performs several tasks. First, it 

allocates a block of memory that is readable, writable, and executable. Next, it stores the value of the 

mem object obtained while hijacking execution into the newly allocated memory. This value is used later 

to locate the arbitrary native code payload (Stage 2) and to facilitate process continuation (Stage 4). 

Next, the ROP stager copies the machine code for stages 2 and 4 into the RWX memory block. Then, it 

creates a new thread that will handle executing Stages 2 and 3. Finally, we execute the Stage 4 machine 

code. 

Note that all of the gadgets that compose this ROP chain are from msvcr100.dll. This library was chosen 

since it is included with all releases of JRE 7. A similar library, msvcr71.dll, ships with all released versions 



of Oracle JRE 6 and has never changed. Based on this fact, Accuvant LABS’ R+D team predicts that 

msvcr100.dll is unlikely to change when future versions of JRE 7 are released. 

The payloads for Stages 2 and 4 are concatenated and placed immediate after the ROP stager when 

crafting the OpenType font. These payloads and the ROP stager contain references to each other that 

are calculated when building the font.  

Stage 2 is responsible for locating and launching the arbitrary native code payload. To find this payload, 

we use the mem pointer value passed from the ROP stager. Inside the mem structure, the base member 

holds an array of pointers to all of the memory blocks allocated by the tsi_* custom allocator functions. 

We scan this array looking for an element with a size matching the loca font table data structure, which 

contains the arbitrary native code payload. Within the font file, the loca table data is stored in 32-bit big 

endian values. When the loca table is processed, the 32-bit values are read and byte-swapped. In 

addition to allowing almost arbitrary sized native code payloads, this affords some minor obfuscation. 

Once located, the native code payload is copied into an empty area of RWX memory and execution 

continues to Stage 3. 

Stage 3 consists of machine code that executes the Windows calculator (calc.exe) program on the target. 

In order to facilitate process continuation, the included Stage 3 payload gracefully returns execution to 

the caller. Using a payload that does not return to the caller may prevent the thread from exiting cleanly 

and may even cause a crash. In some cases this could cause the process continuation machine code to 

fail and JRE to crash. 

Stage 5 finalizes graceful process continuation. As with Stage 2, this stage uses the mem pointer passed 

from the ROP stager. In this case, we scan for a block of memory containing the CFFClass structure, 

which contains the operator stack. During the hijacking execution phase, we stored the original values 

from the jmp_buf here. We use these values to restore the value of several volatile and non-volatile 

registers that get modified during the exploitation process. Once restored, execution is returned to the 

original calling function and the JRE process continues as if nothing had happened. 

Conclusion 
Through this work, Accuvant LABS demonstrated that it is still possible to exploit memory corruptions 

Oracle’s Java Runtime Environment. In spite of modern exploit mitigations, some vulnerabilities remain 

highly exploitable. This is especially true for software that contains light-weight virtual machines, such as 

JRE and many common Web browsers. The sheer number of Java exploits demonstrated at Pwn2Own 

2013, combined with the massive number of high impact vulnerabilities addressed in Oracle’s April Java 

CPU suggests a need to seriously reexamine how and why we use Java. In the meantime, follow popular 

advice4 and uninstall or at least disable the browser plugin. 

                                                             
4 http://krebsonsecurity.com/how-to-unplug-java-from-the-browser/ 

http://krebsonsecurity.com/how-to-unplug-java-from-the-browser/


Timeline 
November 1st, 2012 - Found the bug while fuzzing 

November 2nd, 2012 - Concluded root cause analysis and began exploring primitives 

November 14th, 2012 - Finished the exploit 

December 11th, 2012 - JRE 7 Update 10 released (did not fix the issues) 

January 13th, 2013 - JRE 7 Update 11 released (did not fix the issues, prompting introduced) 

January 17th, 2013 - Pwn2Own 2013 Announced (including Java) 

February 1st, 2013 - JRE 7 Update 13 (accelerated release, did not fix the issues, prompting now default) 

February 19th, 2013 - JRE 7 Update 15 released (did not fix the issues) 

February 26th, 2013 - Registered for Pwn2Own 2013 

March 4th, 2013 - JRE 7 Update 17 released (out of band! did not fix the issues) 

March 6th, 2013 - Demonstrated the exploit at Pwn2Own, details given to ZDI, CVE-2013-1491 assigned 

March 29th, 2013 - Vulnerability reported to Oracle by ZDI 

April 16th, 2013 - Oracle Java CPU released fixing these issues 

May 10th, 2013 - ZDI public advisory released5 

May 21st, 2013 - Released this document 
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5 http://www.zerodayinitiative.com/advisories/ZDI-13-078/ 

http://www.zerodayinitiative.com/advisories/ZDI-13-078/

